Optimal convergence rates in non-parametric regression with fractional time series errors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convergence rates in nonparametric regression with fractional time series errors

Consider the estimation of g( ), the -th derivation of the mean function in a xed design, nonparametric regression with a linear, invertible, stationary time series error process i. Assume that g 2 C k and that the spectral density of i has the form f( ) cf j j as ! 0 with constants cf > 0 and 2 ( 1; 1). Let r = (1 )(k )=(2k + 1 ). It is shown that the optimal convergence rate for ĝ( ) is n r ....

متن کامل

Recent Developments in Non- and Semiparametric Regression with Fractional Time Series Errors

This paper summarizes recent developments in nonand semiparametric regression with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the dependence structure of the error process is estimated by approximate maximum likelihood. Asymptotic properties o...

متن کامل

Non-parametric Cointegrating Regression with Nnh Errors

This paper studies a non-linear cointegrating regression model with nonlinear nonstationary heteroskedastic error processes. We establish uniform consistency for the conventional kernel estimate of the unknown regression function and develop a two-stage approach for the estimation of the heterogeneity generating function.

متن کامل

Nonparametric regression with rescaled time series errors

We consider a heteroscedastic nonparametric regression model with an autoregressive error process of finite known order p. The heteroscedasticity is incorporated using a scaling function defined at uniformly spaced design points on an interval [0,1]. We provide an innovative nonparametric estimator of the variance function and establish its consistency and asymptotic normality. We also propose ...

متن کامل

Kernel Dependent Functions in Nonparametric Regression with Fractional Time Series Errors

This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (δ) in the asymptotic variance and finding closed form formula of it, where δ is the long-memory parameter. It is shown that V (δ) has a unified form for δ ∈ (−0.5, 0.5)\0 with V (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Analysis

سال: 2012

ISSN: 0143-9782

DOI: 10.1111/j.1467-9892.2012.00811.x